Mathlete Training Centre WMI 2022 GRADE 8A

1. Given that $40^2 = 1600$ and $50^2 = 2500$. If *n* is an integer, and $n < \sqrt{2022} < n + 1$, find *n*.

- (A) 47
- (B) 45
- (C) 44
- (D) 43

Perseverence Rigor Dedication 224 Bishan Street 23 BI-13

MATHLETE TRAINING CENTRE

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

- 2. Find the hundreds digit of 9999.98 \times 9999.98.
 - (A) 4
- **(B)** 5
- (C) 6
- (D) 8

MATHLETE TRAINING CENTRE

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

- 3. Which option below is the factor of $2(x-1)^2 + 5(x-1) + 3$?
 - (A) x
- (B) x 1
- (C) x + 1
- **(D)** 2x + 3

MATHLETE TRAINING CENTRE

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

4. In the picture, a rectangle ABCD is 3x + 1 in length and 2x + 1 in width. If a square whose side length is 3 is cut from the rectangle, find the perimeter of the remaining part.

- **(A)** 10x
- **(B)** 10x 2
- (C) 10x 4
- **(D)** 10x + 4

MATILLIL IIVAIINING CLINIKL

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

Page: 2 of 8

5. A pair of set squares are placed as below. If $\angle 1 = 80^{\circ}$, $find \angle 2$.

(A) 80° Perseverence Rigor Dedication 224 Bishan Street 23 BI-I31

- (B) 95°
- (C) 100°
- (D) 105°

LETE TRAINING CENTRE

- 6. In $\triangle ABC$, $\overline{AB} + \sqrt{6} + 1$, $\overline{BC} = 2 + \sqrt{3}$, and $\overline{AC} = \sqrt{2} + \sqrt{5}$. Find the relation among $\angle A$, $\angle B$ and $\angle C$.
 - (A) $\angle A > \angle B > \angle C$
- **(B)** $\angle B > \angle A > \angle C$ **(C)** $\angle C > \angle B > \angle A$

AINING CENTRE

(D) $\angle A > \angle C > \angle B$

MATHLETE TRAINING CEN

- 7. Suppose a, b, 48, c, d, and 30 make an arithmetic sequence; b, x, d and y make a geometric sequence. Find y.
 - **(A)** $12\sqrt{3}$
- (B) $12\sqrt{6}$
- **(C)** $18\sqrt{2}$
- **(D)** $18\sqrt{6}$

MATHLETE TRAINING CENTRE

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

MATHLETE TRAINING CENTRE

8. As shown in the picture, $L \parallel M$, $\angle 1 = \angle 3 = 35^{\circ}$. Find $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5$. (\parallel : parallel)

- (A) 180°
- **(B)** 200°
- (C) 210°
- (D) 240°

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

Page: 4 of 8

9. Two grid points A and B are on a piece of 4×4 square paper. Find a grid point C to make $\triangle ABC$ an isoceles right triangle. How many such point C's are there?

(A) 1 (B) 2

C) 3 (D)

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

MATHLETE TRAINING CENTRE

10. Company W uses the linear function to adjust employee's salary. Below shows the monthly salary of three employees in 2021 and 2022. How much is Max's monthly salary in 2021?

	Jenny	Paul	Max
2021	\$500	\$400	?
2022	\$700	\$500	\$1200

(A) \$700

(B) \$750

(C) \$800

(D) \$900

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

11. In the picture, ABCD is a square, and $\overline{AP}=7$, $\overline{BP}=13$. Find the area of ABCD.

- (A) 240
- **(B)** 256
- (C) 288
- (D) 289

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

MATHLETE TRAINING CENTRE

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

- 12. Set f(n) = 4n 90, in which n is a positive integer. If $f(1) + f(2) + f(3) + \dots + f(n) = 0$, find n.
 - **(A)** 34
- **(B)** 36
- (C) 44
- **(D)** 46

MATHLETE TRAINING CENTRE

Perseverence Rigor Dedication 224 Bishan Street 23 BI-131

Page: 6 of 8

- 13. Set the median of the ten numbers 1, 3, 3, 4, 5, 5, 6, 7, 7 and 9 to be a. If a number is taken out at will from these ten numbers, find the probability that such number is larger than a.
 - (A) $\frac{2}{5}$
- (B) $\frac{3}{5}$ (C) $\frac{1}{4}$
- (D) $\frac{2}{3}$

MATHLETE TRAINING CENTRE

MATHLETE TRAINING CENT

- 14. Given that k is a root of the quadratic equation $x^2+2x-8=0$. Find (k-3)(k+3)(k-1)(k+5).
 - (A) 20
- **(B)** -15 **(C)** -20
- (D) -35

MATHLETE TRAINING CEN

15. Given a rhombus ABCD on the rectangular coordinate plane. Suppose its side $\overline{AD} \perp y - axis$ on E, point B is on y - axis, $\overline{BC} = 5$, $\overline{BE} = 2\overline{DE}$, and the graph of the inverse function $y = \frac{k}{r}(x > 0)$ passes through points C and D at the same time. Find k.

- (B) $\frac{40}{3}$
- (C) $\frac{5}{2}$ (D) $\frac{5}{4}$

LETE TRAINING CEN

MATHLETE TRAINING C

Page: 8 of 8